首页> 外文OA文献 >Local Shape Spectrum Analysis for 3D Facial Expression Recognition
【2h】

Local Shape Spectrum Analysis for 3D Facial Expression Recognition

机译:三维人脸表情识别的局部形状谱分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the problem of facial expression recognition using 3D data.Building from one of the most successful frameworks for facial analysis usingexclusively 3D geometry, we extend the analysis from a curve-basedrepresentation into a spectral representation, which allows a completedescription of the underlying surface that can be further tuned to the desiredlevel of detail. Spectral representations are based on the decomposition of thegeometry in its spatial frequency components, much like a Fourier transform,which are related to intrinsic characteristics of the surface. In this work, wepropose the use of Graph Laplacian Features (GLF), which results from theprojection of local surface patches into a common basis obtained from the GraphLaplacian eigenspace. We test the proposed approach in the BU-3DFE database interms of expressions and Action Units recognition. Our results confirm that theproposed GLF produces consistently higher recognition rates than thecurves-based approach, thanks to a more complete description of the surface,while requiring a lower computational complexity. We also show that the GLFoutperform the most popular alternative approach for spectral representation,Shape- DNA, which is based on the Laplace Beltrami Operator and cannot providea stable basis that guarantee that the extracted signatures for the differentpatches are directly comparable.
机译:我们研究了使用3D数据进行面部表情识别的问题。基于使用3D几何图形的最成功的面部分析框架之一,我们将分析范围从基于曲线的表示扩展为光谱表示,从而可以完整地描述下面的表面可以进一步调整到所需的细节水平。光谱表示基于几何形状在其空间频率分量中的分解,非常类似于傅立叶变换,这与表面的固有特性有关。在这项工作中,我们建议使用图拉普拉斯特征(GLF),它是将局部表面斑块投影到从GraphLaplacian特征空间获得的通用基础中而得到的。我们在BU-3DFE数据库中测试了表达和动作单位识别方面的建议方法。我们的结果证实,由于对曲面的更完整描述,同时要求较低的计算复杂度,因此所提出的GLF与基于曲线的方法相比,始终能够产生更高的识别率。我们还表明,GLF优于谱表示法中最流行的替代方法Shape-DNA,它基于Laplace Beltrami算子,不能提供一个稳定的基础来保证所提取的特征码可以直接比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号